The Energy-Aware Job-Shop Scheduling Problem under Time-of-Use Pricing

A Period-Indexed model

Marouane Felloussi, Xavier Delorme, Paolo Gianessi

Mines Saint-Etienne, LIMOS UMR 6158 CNRS, Saint-Etienne, France

February 24, 2025

ICORES 2025, Porto, Portugal

1. Introduction

2. Mixed-Integer-Linear-Programming approach

- 2.1 Period-Indexed formulation
- 2.2 Valid inequalities

3. Computational results

- 3.1 Formulation comparison
- 3.2 ToU profile impact

4. Conclusion and perspectives

1. Introduction

- 2. Mixed-Integer-Linear-Programming approach
- **3. Computational results**
- 4. Conclusion and perspectives

The Job-Shop Scheduling Problem:

- Schedule jobs with ordered operations on machines to optimize some criterion.
- Relevant problem in OR, strongly NP-hard [1].
- Modeling Approaches:
 - » Time-Indexed formulations \Rightarrow strong dual bounds, large MILPs.
 - $\, \text{\scriptscriptstyle >\!\!>} \,$ Disjunctive formulations \Rightarrow more compact MILPs, weak relaxations.

Energy consideration:

- Production is energy-intensive, electrification of processes (etc.)
- ToU pricing:
 - » Non-regular criterion.
 - » Period-Indexed formulation

Figure: Seasonal Time-of-Use pricing example [2]

- Machines $m \in \mathcal{M}$ with power consumption φ_m .
- **Jobs** $j \in \mathcal{J}$ to execute over a time horizon C:
 - » Processed over an ordered subset of machines.
 - » Having constant processing times $q_{j,m} \Rightarrow$ energy consumption $\varphi_m \cdot q_{j,m}$.
 - » Direct precedence constraints.
- **Operations** $o \in \mathcal{O} := \mathcal{J} \times \mathcal{M}$, i.e. processing of a job on a machine.
- ToU Periods $p \in \mathcal{P}$:
 - » Duration I^p and electricity price c_p per unit.
 - » $[t^{p}, t^{p+1}]$, with $t^{p+1} t^{p} = l_{p}$, $t^{1} = 0$ and $t^{|\mathcal{P}|} = C$.

A **feasible solution** consists of a **schedule** where each job $j \in \mathcal{J}$ processes over machines $m \in \mathcal{M}$, during one or more ToU periods in \mathcal{P} , such that:

- same-machine operations do not process simultaneously (non-overlap),
- operations may not interrupt processing (non-preemption),
- operation sequencing respects a predefined order (precedence).

Objective

The goal is to find a **feasible** solution **minimizing** the Total Energy Cost **(TEC)**.

Instance and Solution

Machine <i>m</i>	1	2 3	3		Job <i>j</i>	1	2	3
Power φ_m	5	6 8	3	_	Sequence M_j	$\{1, 3, 2\}$	$\{2, 1, 3\}$	$\{2, 3, 1\}$
Machine <i>m</i>	1	2	3		ToU period p	on-peak	off-peak	
$q_{1,m}$	20	10	30	_	Tariff c ^p	0.159	0.13	
$q_{2,m}$	5	15	10		Duration <i>IP</i>	20	10	
q _{3,m}	10	15	20					

Makespan minimization (TEC = 208.2)

Instance and Solution

Machine <i>m</i>	1	2 3	3		Job <i>j</i>	1	2	3
Power φ_m	5	6 8	3	_	Sequence M_j	$\{1, 3, 2\}$	$\{2, 1, 3\}$	$\{2, 3, 1\}$
Machine <i>m</i>	1	2	3		ToU period p	on-peak	off-peak	
$q_{1,m}$	20	10	30	_	Tariff c ^p	0.159	0.13	
$q_{2,m}$	5	15	10		Duration <i>IP</i>	20	10	
q _{3,m}	10	15	20					

Makespan minimization (TEC = 208.2)

Instance and Solution

Machine <i>m</i>	1	2	3	Job j	1	2	3
Power φ_m	5	6	8	Sequence M _j	$\{1, 3, 2\}$	$\{2, 1, 3\}$	$\{2, 3, 1\}$
		1 -					
Machine <i>m</i>	1	2	3	ToU period <i>p</i>	on-peak	off-peak	
$q_{1,m}$	20	10	30	Tariff c ^p	0.159	0.13	
$q_{2,m}$	5	15	10	Duration <i>I^p</i>	20	10	
q _{3,m}	10	15	20				

Energy cost minimization s.t makespan constraint C_{max} (TEC = 199.9)

Short literature review

Problem class	Article	Problem*	MILP Formulation
job-shop	[4]	$Jm ext{ on/off}, r_j, d_j extsf{TEC} \ Jm extsf{P}_{max} extsf{TEC}$	TI
scheduling	[5]		D,TI
flexible job-shop	[6]	FJm on/off C_{max} ,TEC	TI
scheduling	[7]	FJm C_{max} ,TEC	TI
flow-shop scheduling	[8]	F2 prmu, on/off TEC	PI+TI
parallel machine scheduling	[9] [10] [11]	Pm C _{max} ,TEC Rm TEC Rm TEC	TI PI PI
single machine	[12]	1 <i>batch</i> TEC	PI,TI
scheduling	[13]	1 <i>batch</i> TEC	PI

Table: Some works on energy-aware shop and machine scheduling.

*Graham's 3-field notation [3]

Short literature review

Problem class	Article	Problem*	MILP Formulation
job-shop	[4]	$Jm ext{ on/off}, r_j, d_j extsf{TEC} \ Jm extsf{P}_{ extsf{max}} extsf{TEC}$	TI
scheduling	[5]		D,TI
flexible job-shop	[6]	FJm on/off C_{max} ,TEC	TI
scheduling	[7]	FJm C_{max} ,TEC	TI
flow-shop scheduling	[8]	F2 prmu, on/off TEC	PI+TI
parallel machine scheduling	[9] [10] [11]	Pm C _{max} ,TEC Rm TEC Rm TEC	TI PI PI
single machine	[12]	1 <i>batch</i> TEC	PI,TI
scheduling	[13]	1 <i>batch</i> TEC	PI

Table: Some works on energy-aware shop and machine scheduling.

*Graham's 3-field notation [3]

Short literature review

Problem class	Article	Problem*	MILP Formulation	_
job-shop scheduling	this work [4] [5]	Jm TEC $Jm on/off, r_j, d_j TEC$ $Jm P_{max} TEC$	PI TI D,TI	
flexible job-shop scheduling	[6] [7]	FJm on/off C_{max} , TEC FJm C_{max} , TEC	TI TI	_
flow-shop scheduling	[8]	F2 prmu, on/off TEC	PI+TI	
parallel machine scheduling	[9] [10] [11]	Pm C _{max} ,TEC Rm TEC Rm TEC	TI PI PI	_
single machine scheduling	[12] [13]	1 <i>batch</i> TEC 1 <i>batch</i> TEC	PI, <mark>TI</mark> PI	_

Table: Some works on energy-aware shop and machine scheduling.

*Graham's 3-field notation [3]

We introduce:

- a new period-indexed MILP for the Jm||TEC,
- valid inequalities to improve linear relaxations and B&B tree exploration.

We show the results of computational experiments aimed to:

- compare the period-indexed formulation against the state of the art,
- assess the effectiveness of the valid inequalities,
- show the impact of the **Time-of-Use** profile.

1. Introduction

2. Mixed-Integer-Linear-Programming approach

- 2.1 Period-Indexed formulation
- 2.2 Valid inequalities

3. Computational results

4. Conclusion and perspectives

Variables

Processing status

$$x_{j,m}^{p} = \begin{cases} 1, & ext{if operation } (j,m) ext{ is processed during period } p \\ 0, & ext{otherwise} \end{cases} \quad \forall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P} \end{cases}$$

Processing duration

 $d^p_{i,m} \in \mathbb{R}^+$: time spent processing operation (j,m) on period p. $\forall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P}$

Variables

Processing status

$$x_{j,m}^p = egin{cases} 1, & ext{if operation } (j,m) ext{ is processed during period } p & ext{} \forall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P} \ 0, & ext{otherwise} \end{cases}$$

Processing duration

$$d_{j,m}^p \in \mathbb{R}^+$$
: time spent processing operation (j,m) on period p . $orall j \in \mathcal{J}, m \in \mathcal{M}, p \in \mathcal{P}$

Starting/completion date

 $s_{j,m}, c_{j,m} \in \mathbb{R}^+$: starting and completion dates of operation (j,m) $\forall j \in \mathcal{J}, m \in \mathcal{M}$

Machine disjunction

$$u_{j,j',m} = egin{cases} 1, & ext{ processing of operation } (j,m) ext{ ends before start of } (j',m) & ext{ } j < j' \in \mathcal{J}, m \in \mathcal{M} \ 0, & ext{ otherwise } \end{cases}$$

Schedule total cost

The total operational cost of a schedule is minimized:

$$\min \sum_{p \in \mathcal{P}} c^p \sum_{m \in \mathcal{M}} \varphi_m \sum_{j \in \mathcal{J}} d_{j,m}^p$$

 φ_m : power of machine *m* c^p : cost of period *p*

(1)

Core constraints

Total operation processing

$$\sum_{p\in\mathcal{P}}d_{j,m}^{p}=q_{j,m},\quad\forall(j,m)\in\mathcal{O}.$$
(2)

 $q_{j,m}$: duration of (j, m)

Core constraints

Total operation processing

$$\sum_{p\in\mathcal{P}}d_{j,m}^p=q_{j,m},\quad orall(j,m)\in\mathcal{O}.$$

 $q_{j,m}$: duration of (j, m)

Machine disjunction

$$c_{j,m} - s_{j',m} \leq \alpha_{j,j',m} \cdot (1 - u_{j,j',m}),$$

$$c_{j',m} - s_{j,m} \leq \beta_{j,j',m} \cdot u_{j,j',m},$$

 $\begin{aligned} \forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j', \\ \forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j'. \end{aligned}$ (3a)

 $\alpha_{j,j',m}$ and $\beta_{j,j',m}$: constants

(2)

Core constraints

Total operation processing

$$\sum_{oldsymbol{p}\in\mathcal{P}}d_{j,m}^{oldsymbol{p}}=q_{j,m},\quad orall(j,m)\in\mathcal{O}.$$

 $q_{j,m}$: duration of (j, m)

Machine disjunction

$$c_{j,m} - s_{j',m} \leq \alpha_{j,j',m} \cdot (1 - u_{j,j',m}),$$

$$c_{j',m} - s_{j,m} \leq \beta_{j,j',m} \cdot u_{j,j',m},$$

$$\forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j',$$

$$\forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j'.$$
(3a)
(3b)

 $\alpha_{j,j',m}$ and $\beta_{j,j',m}$: constants

Precedence

$$c_{j,m}\leqslant s_{j,m'}, \quad orall j\in \mathcal{J}, orall m,m'\in \mathcal{M}: (j,m)\prec (j,m').$$

(4)

(2)

Variable linking

Variable linking: x and d

$$d^p_{j,m}\leqslant \min\{l^p,q_{j,m}\}\cdot x^p_{j,m}, \quad orall(j,m)\in \mathcal{O}, orall p\in \mathcal{P}.$$

 I^p : length of period p

(5)

Variable linking: x and d

$$d_{j,m}^p \leqslant \min\{l^p,q_{j,m}\}\cdot x_{j,m}^p, \quad orall(j,m)\in \mathcal{O}, orall p\in \mathcal{P}.$$

 I^p : length of period p

Variable linking: x, d and s

$$\begin{aligned} d_{j,m}^{p} \leqslant t^{p+1} - s_{j,m} + \gamma_{j,m}^{p} \cdot (1 - x_{j,m}^{p}), & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, \\ d_{j,m}^{p} \leqslant c_{j,m} - t^{p} \cdot x_{j,m}^{p}, & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}. \end{aligned}$$
(6a)

These constraints guarantee non-preemption.

 $[t^{p}, t^{p+1}]$: period p $\gamma_{j,m}^{p}$: constant (5)

• For
$$p = 1$$
, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,

• For
$$p = 1$$
, (6a) $\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$,
• For $p = 2$, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 - x^2)$,

• For p = 1, (6a)
$$\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$$
,
• For p = 2, (6a) $\Rightarrow d^2 \le 1 + 10 \cdot (1 - x^2)$,
• For p = 3, (5) $\Rightarrow d^3 \le 2 \cdot x^3$

• For p = 1, (6a)
$$\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$$
,
• For p = 2, (6a) $\Rightarrow d^2 \le 1 + 10 \cdot (1 - x^2)$,
• For p = 3, (5) $\Rightarrow d^3 \le 2 \cdot x^3$
• For p = 4, (6b) $\Rightarrow d^4 \le 6 - 5x^4$,

• For p = 1, (6a)
$$\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$$
,
• For p = 2, (6a) $\Rightarrow d^2 \leq 1 + 10 \cdot (1 - x^2)$,
• For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$
• For p = 4, (6b) $\Rightarrow d^4 \leq 6 - 5x^4$,
• For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,

• For p = 1, (6a)
$$\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$$
,
• For p = 2, (6a) $\Rightarrow d^2 \leqslant 1 + 10 \cdot (1 - x^2)$,
• For p = 3, (5) $\Rightarrow d^3 \leqslant 2 \cdot x^3$
• For p = 4, (6b) $\Rightarrow d^4 \leqslant 6 - 5x^4$,
• For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,
• (2) $\Rightarrow \sum_{p \in \mathcal{P}} d^p = q$

• For p = 1, (6a)
$$\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$$
,
• For p = 2, (6a) $\Rightarrow d^2 \leq 1 + 10 \cdot (1 - x^2)$,
• For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$
• For p = 4, (6b) $\Rightarrow d^4 \leq 6 - 5x^4$,
• For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,
• (2) $\Rightarrow \sum_{p \in \mathcal{P}} d^p = q$

• For p = 1, (6a)
$$\Rightarrow x^1 = 0 \Rightarrow d^1 = 0$$
,
• For p = 2, (6a) $\Rightarrow d^2 \leq 1 + 10 \cdot (1 - x^2)$,
• For p = 3, (5) $\Rightarrow d^3 \leq 2 \cdot x^3$
• For p = 4, (6b) $\Rightarrow d^4 \leq 6 - 5x^4$,
• For p = 5, (6b) $\Rightarrow x^5 = 0 \Rightarrow d^5 = 0$,
• (2) $\Rightarrow \sum_{p \in \mathcal{P}} d^p = q$

A period-indexed MILP formulation

$$\begin{array}{ll} \min & \sum_{\rho \in \mathcal{P}} c^{\rho} \sum_{m \in \mathcal{M}} \varphi_{m} \sum_{j \in \mathcal{J}} d^{\rho}_{j,m}, & (7a) \\ [s.t.] & \sum_{\rho \in \mathcal{P}} d^{\rho}_{j,m} = q_{j,m}, & \forall (j,m) \in \mathcal{O}, & (7b) \\ d^{\rho}_{j,m} \leqslant \min\{l^{\rho}, q_{j,m}\} \cdot x^{\rho}_{j,m}, & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (7c) \\ c_{j,m} - s_{j',m} \leqslant \alpha_{j,j',m} \cdot (1 - u_{j,j',m}), & \forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j', & (7d) \\ c_{j',m} - s_{j,m} \leqslant \beta_{j,j',m} \cdot u_{j,j',m}, & \forall m \in \mathcal{M}, \forall j, j' \in \mathcal{J} : j < j', & (7e) \\ d^{\rho}_{j,m} \leqslant t^{\rho+1} - s_{j,m} + \gamma^{\rho}_{j,m} \cdot (1 - x^{\rho}_{j,m}), & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (7f) \\ d^{\rho}_{j,m} \leqslant c_{j,m} - t^{\rho} \cdot x^{\rho}_{j,m}, & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (7f) \\ x^{\rho}_{j,m} \in \{0,1\}, d^{\rho}_{j,m} \geqslant 0, & \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}, & (7h) \\ u_{j,j',m} \in \{0,1\}, s_{j,m} \geqslant 0, & \forall j, j' \in \mathcal{J} : j < j', \forall m \in \mathcal{M}. & (7i) \end{array}$$

Formulation properties

Natural date + disjunction variables / big-M formulation \Rightarrow weak LP relaxations (see e.g. [14]).

1. Introduction

2. Mixed-Integer-Linear-Programming approach

- 2.1 Period-Indexed formulation
- 2.2 Valid inequalities

3. Computational results

4. Conclusion and perspectives

Tighter processing duration bounds

Let $\underline{s}_{j,m}$ denote the earliest starting and $\overline{c}_{j,m}$ the latest completion dates, and define

$$\overline{d}_{j,m}^{p} \coloneqq \begin{cases} 0 & \text{if } t^{p+1} \leq \underline{s}_{j,m} \lor \overline{c}_{j,m} \leq t^{p}, \\ t^{p+1} - \underline{s}_{j,m} & \text{if } t^{p} \leq \underline{s}_{j,m} \leq t^{p+1}, \\ \overline{c}_{j,m} - t^{p} & \text{if } t^{p} \leq \overline{c}_{j,m} \leq t^{p+1}. \end{cases}$$

yielding

$$d_{j,m}^{p} \leqslant \min\{l_{p}, p_{j,m}, \overline{d}_{j,m}^{p}\} \cdot x_{j,m}^{p}, \quad \forall (j,m) \in \mathcal{O}, \forall p \in \mathcal{P}.$$
(8)

Non-overlap inequalities

 $m \in \mathcal{M}$

• Same-machine (9a) and same-job (9b) operations non-overlap

$$\sum_{j \in \mathcal{J}} d_{j,m}^{p} \leqslant l^{p}, \qquad \forall m \in \mathcal{M}, \forall p \in \mathcal{P}, \qquad (9a)$$
$$\sum_{j \in \mathcal{J}} d_{j,m}^{p} \leqslant l^{p}, \qquad \forall j \in \mathcal{J}, \forall p \in \mathcal{P}. \qquad (9b)$$

Precedence inequalities

• No processing of predecessors* after current interval

$$\sum_{p'=p+1}^{|\mathcal{P}|} x_{j,m}^{p'} \leqslant (|\mathcal{P}|-p)(1-x_{j,m'}^{p}), \quad \forall (j,m) \prec (j,m'), \forall p \leqslant |\mathcal{P}|-1.$$
(10)

*A similar inequality holds for successors

• No processing on the intervals after operation completion*

$$\sum_{p'=p+1}^{|\mathcal{P}|} x_{j,m}^{p'} \leqslant (|\mathcal{P}|-p)(1-x_{j,m}^p+x_{j,m}^{p+1}), \quad \forall (j,m) \in \mathcal{O}, \forall p \leqslant |\mathcal{P}|-1.$$
(11)

No operation interrupts processing at intermediate intervals

$$x_{j,m}^{p} \geqslant x_{j,m}^{p-1} + x_{j,m}^{p+1} - 1, \quad \forall (j,m) \in \mathcal{O}, \forall p \in \llbracket 2, |\mathcal{P}| - 1
bracket.$$
 (12)

^{*}A similar inequality holds for operation start

General inequalities

• Transitive precedence*

$$u_{j,j',m} + u_{j',j'',m} - 1 \leqslant u_{j,j'',m}, \quad \forall j, j', j'' \in \mathcal{J} : j < j' < j'', \forall m \in \mathcal{M}.$$

$$(13)$$

Consecutive period processing

$$x_{j,m}^{p} + x_{j,m}^{p+1} + x_{j',m}^{p} + x_{j',m}^{p+1} \leqslant 3, \forall j, j' \in \mathcal{J} : j < j', \forall m \in \mathcal{M}, \forall p \leqslant |\mathcal{P}| - 1.$$
(14)

• Upper bound on number of processing intervals**

$$\sum_{p \in \mathcal{P}} x_{j,m}^{p} \leqslant \lfloor \frac{q_{j,m}}{\min_{p} l^{p}} \rfloor + 2, \quad \forall (j,m) \in \mathcal{O}.$$
(15)

 $u_{j,j',m} = 1$ if j precedes j' on m

**Similar to the trivial bin-packing relaxation

1. Introduction

2. Mixed-Integer-Linear-Programming approach

3. Computational results

- 3.1 Formulation comparison
- 3.2 ToU profile impact
- 4. Conclusion and perspectives

Subset of instances in Masmoudi et al. [5], based on:

- Classic benchmark JSSP instances
 - » ft06 [15] with 6 machines and 6 jobs, $C_{\text{max}} = 56$,
 - » la04 [16] with 5 machines and 10 jobs, C_{\max} = 590.
- 3 time horizons $\mathcal{C} = \lambda \cdot \mathcal{C}_{\mathsf{max}}$ with $\lambda \in \{1.0, 1.1, 1.2\}$,
- 5 sets of power values from $\mathcal{U}[5,10]$,
- On-off peak ToU profile [5]
- \Rightarrow 15 small and 15 large instances.

$$\label{eq:PI0} \begin{split} PI_0 &: \textbf{no} \text{ valid inequalities} \\ PI_{all} &: \textbf{all valid inequalities} \end{split}$$

 PI_1 : non-preemption, precedence and general inequalities (10-15)

 PI_2 : tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

 PI_0 : **no** valid inequalities PI_{all} : **all** valid inequalities Pl₁ : non-preemption, precedence and general inequalities (10-15) Pl₂ : tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

		PI ₀			Pl ₁			Pl ₂			Plall		
$inst./\lambda$	T/(%)	$%_{bks}^{root}$	#nd	T/(%)	$\%_{\rm bks}^{\rm root}$	#nd	T/(%)	$^{\circ}_{\rm 0bks}$	#nd	T/(%)	$\%_{\rm bks}^{\rm root}$	#nd	
ft06/1.0	0.02	12.4%	1	0.02	12.4%	2	0.01	0.9%	1	0.01	0.9%	1	
ft06/1.1	2.21	10.7%	2232	3.07	10.7%	2473	0.40	0.6%	470	0.62	0.6%	386	
ft06/1.2	64.40	10.3%	50K	56.92	10.3%	38K	1.96	0.9%	1606	2.45	0.9%	1165	
la04/1.0	20.62	12.6%	3910	23.14	12.6%	3700	4.00	0.5%	2237	6.44	0.5%	1900	
la04/1.1	(2.8%)	11.8%	612K	(3.3%)	11.8%	276K	0.18	0.0%	75	0.53	0.0%	86	
la04/1.2	(5.3%)	11.8%	506K	(5.4%)	11.8%	205K	0.05	0.0%	1	0.14	0.0%	1	

Table: Comparison of the different proposed variants on the ft06 and la04 instances.

• Time to optimality/(gap% at time limit): **Pl**₂ is faster

 PI_0 : **no** valid inequalities PI_{all} : **all** valid inequalities Pl₁ : non-preemption, precedence and general inequalities (10-15) Pl₂ : tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

	Plo				Pl ₁ Pl ₂				Plall			
$inst./\lambda$	T/(%)	$%_{bks}^{root}$	#nd	T/(%)	$%_{bks}^{root}$	#nd	T/(%)	$%_{\rm bks}^{\rm root}$	#nd	T/(%)	$\rm M_{bks}^{root}$	#nd
ft06/1.0	0.02	12.4%	1	0.02	12.4%	2	0.01	0.9%	1	0.01	0.9%	1
ft06/1.1	2.21	10.7%	2232	3.07	10.7%	2473	0.40	0.6%	470	0.62	0.6%	386
ft06/1.2	64.40	10.3%	50K	56.92	10.3%	38K	1.96	0.9%	1606	2.45	0.9%	1165
la04/1.0	20.62	12.6%	3910	23.14	12.6%	3700	4.00	0.5%	2237	6.44	0.5%	1900
la04/1.1	(2.8%)	11.8%	612K	(3.3%)	11.8%	276K	0.18	0.0%	75	0.53	0.0%	86
la04/1.2	(5.3%)	11.8%	506K	(5.4%)	11.8%	205K	0.05	0.0%	1	0.14	0.0%	1

Table: Comparison of the different proposed variants on the ft06 and la04 instances.

- Time to optimality/(gap% at time limit): Pl₂ is faster
- Root relaxation strength: **Pl**₂ has strong root relaxations

 PI_0 : **no** valid inequalities PI_{all} : **all** valid inequalities Pl₁ : non-preemption, precedence and general inequalities (10-15) Pl₂ : tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

	Plo				Pl ₁ Pl ₂				PI_{all}			
$inst./\lambda$	T/(%)	$\%_{\rm bks}^{\rm root}$	#nd	T/(%)	$\%_{\rm bks}^{\rm root}$	#nd	T/(%)	$\rm M_{bks}^{root}$	#nd	T/(%)	$\rm M_{bks}^{root}$	#nd
ft06/1.0	0.02	12.4%	1	0.02	12.4%	2	0.01	0.9%	1	0.01	0.9%	1
ft06/1.1	2.21	10.7%	2232	3.07	10.7%	2473	0.40	0.6%	470	0.62	0.6%	386
ft06/1.2	64.40	10.3%	50K	56.92	10.3%	38K	1.96	0.9%	1606	2.45	0.9%	1165
la04/1.0	20.62	12.6%	3910	23.14	12.6%	3700	4.00	0.5%	2237	6.44	0.5%	1900
la04/1.1	(2.8%)	11.8%	612K	(3.3%)	11.8%	276K	0.18	0.0%	75	0.53	0.0%	86
la04/1.2	(5.3%)	11.8%	506K	(5.4%)	11.8%	205K	0.05	0.0%	1	0.14	0.0%	1

Table: Comparison of the different proposed variants on the ft06 and la04 instances.

- Time to optimality/(gap% at time limit): Pl₂ is faster
- Root relaxation strength: PI_2 has strong root relaxations
- Number of explored nodes: Plall requires slightly fewer nodes

 PI_0 : no valid inequalities PI_{all} : all valid inequalities

Pl₁: non-preemption, precedence and general inequalities

 PI_2 : tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

 PI_0 : no valid inequalities PI_{all} : all valid inequalities

PI_1 : non-preemption, precedence and general inequalities

Pl₂: tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

		ТІ			PI_2		relativ	relative $\left(\frac{PI_2}{TI}\right)$		
$inst./\lambda$	T/(%)	$^{\circ}_{\rm bks}^{\rm root}$	#nd	T/(%)	$\rm \%^{root}_{bks}$	#nd	#cols	#rows		
ft06/1.0 ft06/1.1 ft06/1.2	0.25 0.37 2.84	0.3% 0.1% 0.2%	1 1 16 4	0.01 0.62 2.45	0.9% 0.6% 0.9%	1 386 1165	0.20 0.19 0.20	0.36 0.33 0.35		
la04/1.0 la04/1.1 la04/1.2	(0.63%) 1432.06 2564.31	0.5% 0.0% 0.0%	60 8.6 27.6	6.44 0.53 0.14	0.5% 0.0% 0.0%	1900 86 1	0.02 0.02 0.02 0.02	0.05 0.05 0.05		

Table: Comparison of the Pl₂ variant and the time-indexed model (TI) of Masmoudi et al. [5].

• Time to optimality/(gap% at time limit): **PI**₂ is fastest

 PI_0 : no valid inequalities PI_{all} : all valid inequalities

Pl₁: non-preemption, precedence and general inequalities

Pl₂: tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

		TI			PI_2		relative $\left(\frac{PI_2}{TI}\right)$	
$inst./\lambda$	T/(%)	$%_{bks}^{root}$	#nd	T/(%)	$\rm M_{bks}^{root}$	#nd	#cols	#rows
ft06/1.0	0.25	0.3%	1	0.01	0.9%	1	0.20	0.36
ft06/1.1	0.37	0.1%	1	0.62	0.6%	386	0.19	0.33
ft06/1.2	2.84	0.2%	16.4	2.45	0.9%	1165	0.20	0.35
la04/1.0	(0.63%)	0.5%	60	6.44	0.5%	1900	0.02	0.05
la04/1.1	1432.06	0.0%	8.6	0.53	0.0%	86	0.02	0.05
la04/1.2	2564.31	0.0%	27.6	0.14	0.0%	1	0.02	0.05

Table: Comparison of the PI_2 variant and the time-indexed model (TI) of Masmoudi et al. [5].

- Time to optimality/(gap% at time limit): Pl₂ is fastest
- Root relaxation strength: comparable

 PI_0 : no valid inequalities PI_{all} : all valid inequalities

Pl₁: non-preemption, precedence and general inequalities

Pl₂: tighter processing duration bounds and non-overlap inequalities (8,9a,9b)

		TI			PI_2		relativ	relative $\left(\frac{PI_2}{TI}\right)$		
inst./ λ	T/(%)	$^{\circ}_{\rm bks}^{\rm root}$	#nd	T/(%)	$%_{\rm bks}^{\rm root}$	#nd	#cols	#rows		
ft06/1.0	0.25	0.3%	1	0.01	0.9%	1	0.20	0.36		
ft06/1.1	0.37	0.1%	1	0.62	0.6%	386	0.19	0.33		
ft06/1.2	2.84	0.2%	16.4	2.45	0.9%	1165	0.20	0.35		
la04/1.0	(0.63%)	0.5%	60	6.44	0.5%	1900	0.02	0.05		
la04/1.1	1432.06	0.0%	8.6	0.53	0.0%	86	0.02	0.05		
la04/1.2	2564.31	0.0%	27.6	0.14	0.0%	1	0.02	0.05		

Table: Comparison of the PI₂ variant and the time-indexed model (TI) of Masmoudi et al. [5].

- Time to optimality/(gap% at time limit): Pl₂ is fastest
- Root relaxation strength: comparable
- Model size: **PI**₂ scales better

1. Introduction

2. Mixed-Integer-Linear-Programming approach

3. Computational results

- 3.1 Formulation comparison
- 3.2 ToU profile impact
- 4. Conclusion and perspectives

Extended from instances in [5]:

- classic benchmark JSSP instances
 - » la04 with 5 machines and 10 jobs, C_{max} = 590.
- Time horizon $C = 1.2 \cdot C_{\max}$,
- 5 sets of power values from $\mathcal{U}[5,10]$,
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

Extended from instances in [5]:

- classic benchmark JSSP instances
 - » la04 with 5 machines and 10 jobs, C_{max} = 590.
- Time horizon $C = 1.2 \cdot C_{\max}$,
- 5 sets of power values from $\mathcal{U}[5,10]$,
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

Extended from instances in [5]:

- classic benchmark JSSP instances
 - » la04 with 5 machines and 10 jobs, C_{max} = 590.
- Time horizon $C = 1.2 \cdot C_{\max}$,
- 5 sets of power values from $\mathcal{U}[5,10]$,
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

Extended from instances in [5]:

- classic benchmark JSSP instances
 - » la04 with 5 machines and 10 jobs, C_{max} = 590.
- Time horizon $C = 1.2 \cdot C_{\max}$,
- 5 sets of power values from $\mathcal{U}[5,10]$,
- ToU profiles
 - » on-off peak (ratio 2:1),
 - » on-off peak (ratio 1:2),
 - » on-off peak (ratio 1:1),
 - » mid-off-on peak.

	TI			PI ₂		
ToU profile	T/(%)	⁰∕o ^{root}	#nd	T/(%)	%root bks	#nd
on-off (2:1) on-off (1:2) on-off (1:1) mid-on-off	2564.31 3103.69 (0.11%)* 2406.81	0.0% 0.4% 0.1% 0.5%	28 925 407 631	0.14 67.89 419.35 84.92	0.0% 1.0% 0.1% 1.6%	1 35K 168K 12K

Table: Comparison of TI and PI_2 on different ToU profiles.

• Time to optimality/gap at time limit: sensitivity to profile but Pl₂ better

	TI			PI_2		
ToU profile	T/(%)	$^{\circ}_{bks}$	#nd	T/(%)	$^{ m voot}_{ m bks}$	#nd
on-off (2:1) on-off (1:2) on-off (1:1) mid-on-off	2564.31 3103.69 (0.11%)* 2406.81	0.0% 0.4% 0.1% 0.5%	28 925 407 631	0.14 67.89 419.35 84.92	0.0% 1.0% 0.1% 1.6%	1 35K 168K 12K

Table: Comparison of TI and PI_2 on different ToU profiles.

- Time to optimality/gap at time limit: sensitivity to profile but PI_2 better
- Root relaxation strength: minor impact on both

	ТІ			Pl_2		
ToU profile	T/(%)	⁰∕oroot bks	#nd	T/(%)	%root bks	#nd
on-off (2:1) on-off (1:2) on-off (1:1) mid-on-off	2564.31 3103.69 (0.11%)* 2406.81	0.0% 0.4% 0.1% 0.5%	28 925 407 631	0.14 67.89 419.35 84.92	0.0% 1.0% 0.1% 1.6%	1 35K 168K 12K

Table: Comparison of TI and PI₂ on different ToU profiles.

- Time to optimality/gap at time limit: sensitivity to profile but PI_2 better
- Root relaxation strength: minor impact on both
- Number of explored nodes: more time spent per node

^{*#}opt. = 0

ToU profile impact

Figure: UB and LB progress on an example instance with on-off (1:1) profile

1. Introduction

- 2. Mixed-Integer-Linear-Programming approach
- 3. Computational results
- 4. Conclusion and perspectives

Conclusions and research perspectives

- A new model for the *Jm*||TEC, indexed on the ToU profile periods.
- Different families of valid inequalities were explored.
- Compared to the SoA Time-Indexed formulation, on benchmark instances:
 - ✓ more compact,
 - ✓ strong linear relaxations,
 - $\checkmark\,$ solves to optimality two open instances.
- Performance is sensitive to the ToU pricing profile.

Conclusions and research perspectives

- A new model for the *Jm*||TEC, indexed on the ToU profile periods.
- Different families of valid inequalities were explored.
- Compared to the SoA Time-Indexed formulation, on benchmark instances:
 - ✓ more compact,
 - ✓ strong linear relaxations,
 - $\checkmark\,$ solves to optimality two open instances.
- Performance is sensitive to the ToU pricing profile.
- $\rightarrow\,$ Studying period-indexed formulations relative to the ToU profile.
- $\rightarrow\,$ Characterizing strong valid inequalities for period-indexed formulations.
- $\rightarrow\,$ Generalizing to other shop-scheduling problems under ToU pricing.

References I

- Michael R Garey, David S Johnson, and Ravi Sethi. The complexity of flowshop and jobshop scheduling. *Mathematics of operations research*, 1(2):117–129, 1976.
- [2] Clean Energy Alliance. Seasonal time-of-use pricing schemes, 2024. URL https://web.archive.org/web/20241202083629/https: //thecleanenergyalliance.org/time-of-use-pricing/.
- [3] R. Graham, E. Lawler, J. Lenstra, and A. Kan. Optimization and approximation in deterministic sequencing and scheduling: A survey. *Annals of Discrete Mathematics*, 5:287–326, 1977.
- [4] Andreas Bley and Andreas Linß. Propagation and branching strategies for job shop scheduling minimizing the weighted energy consumption. In *International Conference on Operations Research*, pages 573–580. Springer, 2022.
- [5] Oussama Masmoudi, Xavier Delorme, and Paolo Gianessi. Job-shop scheduling problem with energy consideration. *International Journal of Production Economics*, 216:12–22, 10 2019. ISSN 09255273. doi: 10.1016/j.ijpe.2019.03.021.
- [6] Myoung Ju Park and Andy Ham. Energy-aware flexible job shop scheduling under time-of-use pricing. *International Journal of Production Economics*, 248, 6 2022. ISSN 09255273. doi: 10.1016/j.ijpe.2022.108507.

References II

- [7] Enda Jiang and Ling Wang. Multi-objective optimization based on decomposition for flexible job shop scheduling under time-of-use electricity prices. *Knowledge-Based Systems*, 204, 9 2020. ISSN 09507051. doi: 10.1016/j.knosys.2020.106177.
- [8] Minh Hung Ho, Faicel Hnaien, and Frederic Dugardin. Exact method to optimize the total electricity cost in two-machine permutation flow shop scheduling problem under time-of-use tariff. *Computers* and Operations Research, 144, 8 2022. ISSN 03050548. doi: 10.1016/j.cor.2022.105788.
- [9] Mauro Gaggero, Massimo Paolucci, and Roberto Ronco. Exact and heuristic solution approaches for energy-efficient identical parallel machine scheduling with time-of-use costs. *European Journal of Operational Research*, 311:845–866, 12 2023. ISSN 03772217. doi: 10.1016/j.ejor.2023.05.040.
- [10] Ada Che, Shibohua Zhang, and Xueqi Wu. Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs. *Journal of Cleaner Production*, 156:688–697, 7 2017. ISSN 09596526. doi: 10.1016/j.jclepro.2017.04.018.
- [11] Jian Ya Ding, Shiji Song, Rui Zhang, Raymond Chiong, and Cheng Wu. Parallel machine scheduling under time-of-use electricity prices: New models and optimization approaches. *IEEE Transactions on Automation Science and Engineering*, 13:1138–1154, 4 2016. ISSN 15455955. doi: 10.1109/TASE.2015.2495328.

- [12] Zheng Tian and Li Zheng. Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches. *European Journal of Operational Research*, 312:512–524, 1 2024. ISSN 03772217. doi: 10.1016/j.ejor.2023.07.012.
- [13] Junheng Cheng, Feng Chu, Chengbin Chu, and Weili Xia. Bi-objective optimization of single-machine batch scheduling under time-of-use electricity prices. *RAIRO - Operations Research*, 50:715–732, 10 2016. ISSN 28047303. doi: 10.1051/ro/2015063.
- [14] David Applegate and William Cook. A computational study of the job-shop scheduling problem. ORSA Journal on computing, 3(2):149–156, 1991. doi: 10.1287/ijoc.3.2.149.
- [15] H Fisher and GL Thompson. Probabilistic learning combinations of local job-shop scheduling rules. Prentice Hall, Englewood Cliffs, New Jersey, pages 225–251, 1963.
- [16] Stephen Lawrence. Resouce constrained project scheduling: An experimental investigation of heuristic scheduling techniques (supplement). Graduate School of Industrial Administration, Carnegie-Mellon University, 1984.

Non-preemption inequalities (1)

• No processing on the intervals after operation completion*

$$\sum_{p'=p+1}^{|\mathcal{P}|} x_{j,m}^{p'} \leqslant (|\mathcal{P}|-p)(1-x_{j,m}^{p}+x_{j,m}^{p+1}), \quad \forall (j,m) \in \mathcal{O}, \forall p \leqslant |\mathcal{P}|-1.$$
(16)

^{*}A similar inequality holds for operation start

Non-preemption inequalities (2)

• No operation interrupts processing

$$x_{j,m}^{p} \geqslant x_{j,m}^{p-1} + x_{j,m}^{p+1} - 1, \quad \forall (j,m) \in \mathcal{O}, \forall p \in \llbracket 2, |\mathcal{P}| - 1 \rrbracket.$$

$$(17)$$

