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Abstract

In this paper, the general framework of sensitivity analysis is first introduced. Two
indices are presented, Sobol’ and Cramér-Von Mises ones. The first classical Sobol’ indices are
estimated using the Pick-Freeze method, Polynomial Chaos expansions then Rank Statistics.
The second type of indices, based on Cramér-Von Mises distances, are more general in the
sense that they take into consideration the whole distribution of the output. They can be
approximated using either Pick-Freeze or Rank Statistics. The different indices estimators’
asymptotic properties are also given. The paper concludes with an application of the different
sensitivity analysis tools on the improvement of aircraft’s design process.

Keywords: Global sensitivity analysis, Sobol’ indices estimation, Pick-Freeze method, Poly-
nomial Chaos expansions, Cramér-Von Mises distance, Chatterjee’s coefficient of correlation,
Top-level aircraft requirements, Aircraft design process.

1 Introduction

In the aircraft design process, Top Level Aircraft Requirements (TLARs) summarize the ex-
pected performance of future aircraft. Some of these requirements can be modeled as constraints
in an optimization problem [1], or as design variables, in order to perform sensitivity analysis
[2]. More generally, when it comes to the study of computer code experiments, a very classical
problem is the evaluation of the relative influence of the input variables on some numerical result
obtained by a computer code. Often, the models are expensive to run in terms of computational
time [3]. It is thus crucial to understand, within just a few runs, the global influence of one or
several inputs of the system under study. When these inputs are regarded as random elements,
this problem is generally referred to as Global Sensitivity Analysis (GSA) [4, 5], as opposed to
local sensitivity that investigates effects of variations of the input factors in the vicinity of nom-
inal values through gradients or partial derivatives [6]. Such a topic has been widely studied in
the last decades and is still challenging nowadays. A classical tool to perform global sensitivity
analysis consists in computing the Sobol’ indices, first introduced in [7] then formally defined
in [8]. The authors use the Hoeffding decomposition [9] for comparing the conditional variance
of the output with respect to some inputs with the total variance of the output. In other liter-
ature, we can find many estimation procedures of Sobol’ indices, namely Monte-Carlo or quasi
Monte-Carlo design experiments [10, 11], and also through polynomial chaos expansions [12].
An efficient estimation can be performed through the Pick-Freeze method [13].
Since Sobol’ indices are variance-based, they only quantify the influence of the inputs on the
mean behavior of the code. Some authors proposed the use of higher moments to define new
indices that take into consideration the whole distribution of the output [14], while others took
interest in distances between the measures in question [15].
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This paper is organized as follows: after introducing the classical Sobol’ indices and the asso-
ciated general framework in section [2], particularly Hoeffding decomposition, the Pick-Freeze
method is introduced in section [3] in order to provide an estimator and its asymptotic prop-
erties. In section [4], polynomial chaos expansions are presented as well as the construction
of the estimators. Next, Cramér-Von Mises indices are defined alongside their estimators and
asymptotic properties in section [5]. The last estimator is given in section [6] based on rank
statistics. A short numerical application is provided at the end of each section. The [7]-th and
last section concludes the article with an application of the different sensitivity analysis tools
introduced, on the aircraft design process.

2 General Framework

We consider X := (Xi)i=1,...,p the input variables defined on the probability space (Ω,F ,P) and
taking its values in a product of measurable spaces E = E1 × E2 × . . . × Ep (p ∈ N∗). Let
f : E → Rk (k ∈ N∗) be a measurable function, the output denoted by Y is given by:

Y = f(X1, . . . , Xp) (1)

Classically, the Xi’s are assumed to be independent random variables and Y to be square-
integrable (i.e. E[‖Y‖2] <∞ ). We also assume that Y ’s co-variance matrix is positive-definite.
Let u be a sub-set of Ip := {1, . . . , p} and ũ its complement in Ip. We denote Xu = (Xi)i∈u and
Eu =

∏
i∈uEi.

We can write f as follows :

f(X) = c+ fu(Xu) + fũ(Xũ) + fu,ũ(Xu, Xũ), (2)

where c ∈ Rk, fu : Eu → Rk, fũ : Eũ → Rk and fu,ũ : E → Rk are given by:

c = E[Y ], fu = E[Y |Xu]− c, fũ = E[Y |Xũ]− c, fu,ũ = Y − fu − fũ − c (3)

Since the terms appearing in the decomposition are orthogonal in L2, we can compute the
co-variance matrix and obtain:

Σ = Cu + Cũ + Cu,ũ. (4)

Here, Σ, Cu, Cũ and Cu,ũ are respectively the co-variance matrixes of Y , fu(Xu), fũ(Xũ) and
fu,ũ(Xu, Xũ). This decomposition is called the Hoeffding decomposition of f . From now on, it
is assumed that k = 1 (i.e. Y ∈ R). Dividing the formula (4) by Σ = Var(Y ), we get:

1 =
Cu

Σ
+
Cũ

Σ
+
Cu,ũ

Σ

Thus

1 =
Var(E[Y |Xu])

Var(Y )
+

Var(E[Y |Xũ])

Var(Y )
+

Cu,ũ

Var(Y )
(5)

The following concept has been first introduced by I.Sobol in [8]:

Definition 2.0.1 When Y ∈ R, we call the quantity Su = Var(E[Y |Xu])
Var(Y ) the closed Sobol’ index

with respect to the input Xu = (Xi)i∈u.

Properties 2.0.1 The Sobol’ indices verify the following properties:
1. The different contributions sum to 1.
2. They are invariant by translation, by any isometry, and by any non degenerated scaling of
the components of Y.

The focus will mainly be on the closed index since its knowledge allows us to recover all indices.
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3 Estimating first-order Sobol’ indices using the Pick-Freeze
Monte Carlo method

3.1 Pick-Freeze estimators

In general, the mathematical calculation of the Sobol’ indices is nearly impossible, even if the
function f is known. It is thus necessary to be able to estimate them. For applications, it
is important to be able to estimate simultaneously several indices. For this purpose, let u :=
(u1, . . . , uk) be k subsets of Ip := {1, . . . , p}. We keep the same notations introduced previously.
The vector of closed Sobol’ indices is then :

Su
Cl :=

(
Var(E[Y |Xi, i ∈ u1])

Var(Y )
, . . . ,

Var(E[Y |Xi, i ∈ uk])
Var(Y )

)
. (6)

The desired quantity to estimate is a fraction whose denominator is fairly easy to estimate. The
problem lies within the estimation of the numerator. The idea behind estimating a conditional
mathematical expectation is by using co-variance instead [16]. For that, we introduce a new
Pick-Freeze variable Y u, defined as follows: let X = (X1, . . . , Xp) and Xu = (Xu

1 , . . . , X
u
p ),

where Xu
j = Xj if j ∈ u and else, Xu

j is an independent copy of Xj . We denote then:

Y u = f(Xu)

Lemma 3.0.1 Assuming that the variable Y is square-integrable. We have:

Var(E[Y |Xu]) = Cov(Y, Y u) (7)

In particular

Su =
Cov(Y, Y u)

Var(Y )
. (8)

Let (Xi)i=1,...,N an N -sample of X and (Xu
i )i=1,...,N an N -sample of Xu, we set Yi = f(Xi) and

Y u
i = f(Xu

i ). It is then possible to estimate Su using:

SuN =
1
N

∑
YiY

u
i − ( 1

N

∑
Yi)(

1
N

∑
Y u
i )

1
N

∑
Y 2
i − ( 1

N

∑
Yi)2

(9)

We can find this estimator in [16], where it has been shown to have good practical behaviour.
The attentive reader will notice however that we have at our disposal two N -samples of the
same law, but only used one of the two to estimate E[Y ] and Var(Y ). Intuitively, using all of the
observations would allow us to come up with a better estimator. For that purpose, the following
estimator has been introduced in [17]:

T uN =
1
N

∑
YiY

u
i − ( 1

N

∑
[
Yi+Y

u
i

2 ])2

1
N

∑
[
Y 2
i +(Y ui )2

2 ]− ( 1
N

∑
[
Yi+Y ui

2 ])2
(10)

3.2 Asymptotic properties

Theorem 3.1 (Consistency) If E[Y 2] 6 +∞ then

SXN and TXN both converge almost surely to SXN as N goes to infinity.

Theorem 3.2 (Central limit theorem) If E[Y 4] 6 +∞ then
√
N(SXN − SX)

L−−−−→
N→∞

N1(0, σ
2
S) (11)

where

σ2S =
Var

(
(Y − E[Y ])

[
(Y X − E[Y ])− SX(Y − E[Y ])

])
Var(Y 2)
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4 Sensitivity Analysis using Polynomial Chaos expansions

4.1 Introduction

We have seen how Sobol’ indices are well-tailored to the case of scalar outputs. Since they
are usually computed by Monte Carlo simulation, they are practically not applicable to CPU-
demanding models such as finite element models. The formalism of Polynomial Chaos expansions
allows obtaining a complete representation of the random response of the model. Their great
advantage is that the full randomness of the response is contained in the set of the expansion
coefficients. In the following sections, we first will prove that the Sobol’ indices of a PC expansion
can be computed analytically from the expansion coefficients. To achieve this, we shall recall
Sobol’ composition first then provide the derivation of Sobol’ indices from the polynomial chaos
expansion of a model. A regression approach is followed in order to estimate the PC coefficients,
that is by minimizing the mean square error of the response approximation in the mean square
sense.

4.2 PCE-based Sobol’ indices

Let us denote by M the mathematical model describing the behavior of a system. Let X =
{X1, . . . , XM} denote the M -dimensional random, considered real-valued, input vector with
joint PDF fX. The output is considered a scalar and is given by:

Y =M(X)

The Sobol’ decomposition of M(X) into summands of increasing dimension reads:

M(X) =M0 +

M∑
i=1

Mi(Xi) +
∑

16i<j6M

Mi,j(Xi, Xj) + . . .+M1,...,M (X) (12)

or equivalently, by:

M(X) =M0 +
∑
u6=∅

Mu(Xu),

where M0 is the mean value of Y , u = {i1, . . . , is} ⊂ {1, . . . ,M} are index subsets and Xu

denotes a subvector of X containing only those components of which the indices belong to u.
The number of summands on the above equation is:

M∑
i=1

(
M

i

)
= 2M − 1

Let DX be the support of the vector X and fXk the marginal PDF of random variable Xk. The
Sobol’ decomposition is unique wheneverM(X) is integrable over the M -dimensional unit cube
KM by choosing summands satsifying the following properties

M0 =

∫
DX

M(t)fX(t)dt (13)

and ∫
DXk
Mi1,...,is(ti1,...,is)fXk(tk)dtk = 0 (14)

where
KM = {X : 0 6 Xi 6 1, i = 1, . . . ,M}

Leading to the orthogonal property

E [Mu(Xu)Mv(Xv)] = 0 if u 6= v. (15)
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The uniqueness and orthogonality properties allow decomposition of the variance D of Y as

D = Var [M(X)] =
∑
u 6=∅

Du, (16)

where Du denotes the partial variance

Du = Var [Mu(Xu)] = E
[
M2

u(Xu)
]

(17)

The Sobol’ index Su is defined as
Su := Du/D, (18)

By definition,
∑

u6=∅ Su = 1. The total sensitivity indices STot
i is per usual given by:

STot
i =

∑
Ii

Du/D, Ii = {u ⊃ i}

Evaluation of Sobol’ indices by Monte Carlo simulation is based on a recursive relationship which
requires computing 2M Monte Carlo integrals involving M(X). This is clearly not affordable
when the computational model is a time-consuming algorithmic sequence. On the other hand,
when PCE of the quantity of interest are available, Sobol’ indices can be obtained analytically
at almost no additional computational cost.

4.3 Computation of Polynomial Chaos expansions

A PCE approximation of Y =M(X) has the form introduced by Xiu & Kaniadakis in [18] :

Ŷ =MPCE(X) =
∑
α∈A

YαΨα (X) (19)

where {Ψα, α ∈ A} is a set of multivariate polynomials that are orthonormal with respect to fX,
with multi-indices α = {α1, . . . , αM} and Sα denoting the corresponding polynomial coefficients.

The multivariate polynomials that comprise the PCE basis are obtained by tensorizations of
appropriate univariate polynomials,

Ψα(X) =

M∏
i=1

ψ
α
(i)
i

(Xi), (20)

where ψ
α
(i)
i

(Xi) is a polynomial of degree αi in the i-th input variable belonging to a family of

polynomials that are orthonormal with respect to fXi . For standard distributions, the associated
family of orthonormal polynomials is well-known, for example, a uniform variable with support
[−1, 1] is associated with the family of Legendre polynomials. The general case can be treated
through an isoprobabilistic transform of X to a basic random vector, this will not be the case
in the present study as we will later take interest in uniformly distributed variables. The set of
multi-indices A is determined by an appropriate truncation scheme. We will use a truncation
scheme selecting all multi-indices satisfying

||α||q =

(
M∑
i=1

αqi

) 1
q

6 p (21)

where 0 < q 6 1 and p is the maximal degree of the polynomial expansion that is selected. In
this paper, we will take q = 1. For more details on how to appropriately select q and p, as well
as for the construction of the multi-index sequence, see [12].
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The coefficients of the of PC-expansions may be calculated by determining the L2-projection of
the response Y onto the subspace spanned by the basis polynomials {Ψα : α ∈ NM , |α| 6 p}.
Assuming the following expression for a scalar response quantity Y :

Y =M(X) = Ỹ (X) + ε (22)

Ỹ (X) =
P−1∑
j=0

YjΨj (X)) (23)

where P = (M+p)!
M !p! is the number of terms after which the series is truncated. Leading to

the following problem, of minimizing the mean-square error of the approximation over a set of
realizations of the input vector

y = argmin E
[
(M(X)− Ỹ (X))2

]
= argmin

Y

1

N

N∑
i=1

M(Xi)−
P−1∑
j=0

YjΨj(X
i)


2

(24)

Denoting by Ψ the matrix whose coefficients are given by:

Ψij = Ψj(X
i), i = 1, . . . , N and j = 0, . . . , P − 1

and by Yex the vector containing the exact response values computed by the model Yex =
{f(Xi), i = 1, . . . ,M}, the solution to (24) reads:

y = (ΨTΨ)−1.ΨT .Yex (25)

where ΨTΨ is called the information matrix. Computationally speaking, it may be ill-conditioned.
For this purpose, the mean-square minimization problem will be solved computationally later
on in the numerical study.

4.4 PCE-based Sobol’ indices

In this subsection, the input parameters are supposed to be uniformly distributed in [0, 1]. As
seen previously, the Legendre polynomials are orthogonal with respect to the uniform probability
measure over [−1, 1]. Thus, the Legendre chaos will be used. Denoting by {Pn(X), n ∈ N} the
family of univariate Legendre polynomials, the multivariate Legendre polynomial is given by

Ψj(X) =

M∏
i=1

Pαi(Xi)

where α is the multi-indice sequence introduced earlier.

Let us now consider Ŷ = MPCE(X), the PCE of the quantity of interest Y = MPCE(X). We
have:

MPCE(X) =

P−1∑
j=0

YjΨj (X) , X ∼ U([−1, 1])M (26)

Let us define by I+i1,...,is the set of α multi-indices such that only the indices (i1, . . . , is) are
non-zero:

I+i1,...,is =

{
α ∈ NM :

αk > 0 k ∈ (i1, . . . , is)
αk = 0 k /∈ (i1, . . . , is)

}
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Note that I+i corresponds to the polynomials depending only on parameter Xi. We can now
gather the P terms in (26) corresponding to the polynomials according to the parameters they
depend on:

MPCE(X) = Y0 +

M∑
i=1

∑
α∈I+i

YαΨα(Xi) +
∑

16i1<i26M

∑
α∈I+i1,i2

YαΨα(Xi1 , Xi2) + . . .

+
∑

16i1<...<is6M

∑
α∈I+i1,...,is

YαΨα(Xi1 , . . . , Xis) + . . .+
∑

α∈I+i1,...,M

YαΨα(X)

(27)

The statistical moments of the response PC-expansion be analytically derived from its coeffi-
cients. In particular, and due to the orthogonality of the basis, the mean and the variance,
respectively, read:

Ỹ = E [M(X)] = Y0

DPCE = Var

P−1∑
j=0

YjΨj(X)


=

P−1∑
j=0

Y 2
j E
[
Ψ2
j (X)

] (28)

Lastly, the orthonormality of the PC basis implies that the random summands on the right-hand
side of (27) satisfy the properties (13) and (14). Assuming that the function M(X) is square-
integrable with respect to the probability measure associated with fX, it’s possible to uniquely
identify each summand in (12) as follows:

Mi1,...,is(Xi1 , . . . , Xis) =
∑

α∈I+i1,...,is

YαΨα(Xi1 , . . . , Xis) (29)

It is now easy to derive sensitivity indices from the above representation. The Polynomial
Chaos-based Sobol’ indices, denoted by SUi1,...,is , are given by

SUi1,...,is =
1

DPCE

∑
α∈I+i1,...,is

Y 2
αE
[
Ψ2
α

]
(30)

To retrieve first-order indices, it suffices to consider a singleton I+i
The total sensitivity indices are also easy to compute. For a given integer sequence (j1, . . . , jt),
let us define the following set:

J(j1,...,jt) = {(i1, . . . , is), (j1, . . . , jt) ⊂ (i1, . . . , is)}

The total PC-based sensitivity indices read:

SUTj1,...,js =
∑

(i1,...,is)∈J(j1,...,jt)

SUi1,...,is

Note: The previous sections show that, once the polynomial chaos representation of a model
is available, a full list of Sobol’ indices is available analytically with almost no additional cost.
Indeed, only elementary mathematical operations are needed to compute these indices from the
expansion coefficients.
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4.5 Application Examples

Let us consider the so-called Sobol’ function:

Y =

q∏
i=1

|4Xi − 2|+ ai
1 + ai

(31)

where the input variables Xi, i = 1, . . . , q are uniformly distributed over [0,1] and ai’s are non
negative. The variance D of Y and the first-order Sobol’ sensitivity indices can be computed
analytically:

D =

q∏
i=1

(Di + 1)− 1, Di =
1

3(1 + ai)2

SUi1,...,is =
1

D

q∏
i=1

Di

Due to its complexity(non-linear and non-monotonic correlations) and the analytical expression
of the Sobol’ indices, the Sobol’ g-function is a classical text example commonly used in sensitiv-
ity analysis. For numerical application, we take q = 8 together with a = [1, 2, 5, 10, 20, 50, 100, 500]
and N = 500 regression points. As expected from the formula above, the lower the coefficient
ai, the more significant the variable Xi.

Index
Analytical
Solution

PC-Based
Solution

SU1 0.6037 0.6031

SU2 0.2683 0.2712

SU3 0.0671 0.0527

SU4 0.0200 0.0171

SU5 0.0055 0.0051

SU6 0.0009 0.0039

SU7 0.0002 0.0001

SU8 0.0000 0.0001

Table 1: g-Sobol’ function, Analytical and PC-based Sobol’ indices(p=2)

5 Sensitivity Analysis based on Cramér-Von Mises distances

5.1 Introduction

The main drawback of the Sobol’ indices and their Monte-Carlo estimation is that they are
order two methods since they derive from the L2-Hoeffding functional decomposition, so they
only take into account the second-order behavior which could hide the different contributions
in some models. A new index was introduced in [19], based on the Cramér-Von Mises distance
between the distribution of the output Y and its conditional law when the input is fixed. This
leads to natural self-normalized indices. These indices take into account the whole output
distribution instead of only the order two moments. Additionally, and in contrary to most of
the other known indices, they are defined for multivariate outputs and thus, are well-tailored to
perform sensitivity analysis.
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5.2 Building the index based on Cramér-Von Mises distances

In this section, let Z = f(X1, . . . , Xp) ∈ Rk be the output of the numerical code and F be the
cumulative distribution function of Z:

F (t) = P(Z 6 t) = E[1{Z6t}], for t = (t1, . . . , tk) ∈ Rk (32)

F u denotes the conditional cumulative distribution function of Z given the u-th input Xu and
is given by

F u(t) = P(Z 6 t|Xu) = E[1{Z6t}|Xu], for t = (t1, . . . , tk) ∈ Rk (33)

where {Z 6 t} = {Z1 6 t1, . . . , Zk 6 tk}. By the law of total expectation and definition of
mathematical expectation relative to indicator functions, We have:

E[F u(t)] = E[E[1{Z6t}|Xu]] = E[1{Z6t}] = F (t). (34)

Let us set Y (t) = 1{Z6t}. Since for any fixed t ∈ Rk, Y (t) is a real-valued random variable, we
can apply the framework presented previously. More precisely, for any u ∈ Ip, let ũ ∈ Ip\{u}.
Applying Hoeffding decomposition on Y (t) yields:

Y (t) = 1{Z6t} = E[Y (t)] + (E[Y (t)|Xu]− E[Y (t)]) + (E[Y (t)|Xũ]− E[Y (t)]) +R(t, u) (35)

where

R(t, u) = Y (t)− E[Y (t)]− (E[Y (t)|Xu)]− E[Y (t)])− (E[Y (t)|Xũ)]− E[Y (t)]);

Computing the variance of both sides in the previous equation leads to:

Var(Y (t)) = F (t)(1− F (t))

= Var (E[Y (t)|Xu]− E[Y (t)]) + Var (E[Y (t)|Xũ]− E[Y (t)]) + Var(R(t, v))

= Var(F u(t)) + Var(F ũ(t)) + Var(R(t, v))

= E[(F u(t)− F (t))2] + E[(F ũ(t)− F (t))2] + Var(R(t, v)).

(36)

The second order Cramér-Von Mises distance between the two empirical distributions, L(Z) and
L(Z|Xu), is defined as: ∫

Rk
E
[
(F u(t)− F (t))2

]
dF (t). (37)

Integrating the terms in (36) with t ∈ Rk and with respect to the distribution of Z gives:∫
Rk
F (t)(1− F (t))dF (t)

=

∫
Rk

E
[
(F u(t)− F (t))2

]
dF (t) +

∫
Rk

E
[
(F ũ(t)− F (t))2

]
dF (t) +

∫
Rk

Var(R(t, v))dF (t) (38)

Following the classical way of defining Sobol’ indices, we normalize the previous equation by∫
Rk
F (t)(1− F (t))dF (t)

which leads to

1 =

∫
Rk E

[
(F u(t)− F (t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
+

∫
Rk E

[
(F ũ(t)− F (t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
+

∫
Rk Var(R(t, v))dF (t)∫

Rk F (t)(1− F (t))dF (t)
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Allowing us to define the Cramér-Von Mises indices with respect to u and ũ as the authors in
[19] defined them:

Su2,CVM =

∫
Rk E

[
(F u(t)− F (t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
and Sũ2,CVM =

∫
Rk E

[
(F ũ(t)− F (t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
(39)

These indices verify the classical Sobol’ indices properties as seen in 2.0.1.

Remark
In this paper, only first-order sensitivity indices are considered. However, one may define higher
order and total Cramér-Von Mises indices in a similar way to Sobol’ ones. It suffices to take u
as any desired subset, ũ being its complement in Ip, and use the previous formula. The total

Cramér-Von Mises index STot,u2,CVM is defined as:

STot,u2,CVM := 1− Sũ
2,CVM = 1−

∫
Rk E

[
(F ũ(t)− F (t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
. (40)

Note 5.2.1 If the coordinates of the output Z are independent and are absolutely continuous
with respect to the Lebesgue measure, the normalizing factor is reduced as in the formula below:∫

Rk
F (t)(1− F (t))dF (t) =

1

2k
− 1

3k
, (k ∈ N∗) (41)

5.3 General index estimation

Denoting the numerator of Su2,CVM by Nu
2,CVM , we can rewrite it as :

Nu
2,CVM = E

Z̃

[
EXu

[
(F u(Z̃)− F (Z̃))2

]]
where Z̃ is an independent copy of Z. We then proceed to estimate following a double Monte-
Carlo scheme as detailed below:

1. We generate a Pick-Freeze sample of Z: two N -samples (Zu,1j , Zu,2j ), 1 6 j 6 N ;

2. We create a third N-sample from Z, independent of (Zu,1j , Zu,2j ): Wk, 1 6 k 6 N .

For the sake of clarity, let Aij,k denote the event {Zu,ij 6 Wk}. The empirical estimator of
Nu

2,CVM is thus given by:

N̂u
2,CVM =

1

N

N∑
k=1

 1

N

N∑
j=1

1A1
j,k
1A2

j,k
−

 1

2N

N∑
j=1

(
1A1

j,k
+ 1A2

j,k

)2 . (42)

It remains now to estimate the denominator Du
2,CVM . It can be rewritten as such:

Du
2,CVM = E[F (Z)(1− F (Z))]

Using the exact same procedure as above, it is estimated by:

D̂u
2,CVM =

1

N

N∑
k=1

 1

2N

N∑
j=1

(
1A1

j,k
+ 1A2

j,k

)
−

 1

2N

N∑
j=1

(
1A1

j,k
+ 1A2

j,k

)2 . (43)
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5.4 Asymptotic properties

Lemma 5.0.1 N̂u
2,CVM is strongly consistent as N goes to infinity.

Theorem 5.1 The sequence of estimators N̂u
2,CVM is asymptotically Gaussian in estimating

Nu
2,CVM . That is,

√
N
(
N̂2,CVM −Nu

2,CVM

)
converges in distribution towards the centered

Gaussian law with limiting variance that can be computed.

Lemma 5.1.1 Ŝu2,CVM is strongly consistent as N goes to infinity.

Theorem 5.2 The sequence of estimators Ŝu2,CVM is asymptotically Gaussian in estimating

Su2,CVM . That is,
√
N
(
Ŝ2,CVM − Su2,CVM

)
converges in distribution towards the centered Gaus-

sian law with limiting variance ξ2, whose explicit expression can be found in [19].

Remark Considering a sample with an appropriate size, we can estimate both Cramér-Von
Mises and Sobol’ indices. More precisely, estimating p Sobol’ indices requires a sample size of
(p + 1)N . Only N more output evaluation are required to get the Cramér-Von Mises ones.
Confidence intervals controlling the accuracy of the estimations are provided by the theorems.
This makes the use of these easy-to-implement indices quite efficient.

5.5 Numerical Application

Let us consider the following linear model

Y = αX1 +X2, α > 0,

where X1 is a Bernoulli random variable with success probability 0 < p < 1 and X2 is a random
variable independent of X1. Let us further assume that X2 has a continuous distribution F
on R with E[X2] = αp and is of finite variance Var(X2) = α2p(1 − p). This way, the random
variables αX1 and X2 share the same expectation and variance, and thus the same first order
Sobol’ indices value which is equal to 1/2.

The aim of such a construction is to point at the inability of the classical Sobol’ indices to
detect differences in influence in some cases, while the Cramér-Von Mises ones permit that since
they take into consideration the whole distribution of the output as we’ve mentioned earlier.

5.5.1 General closed formula

First, since X1 is a Bernoulli random variable, thus taking values as either 0 or 1, we take
interest in the distributions of Y given {X1 = 0} and of Y given {X1 = 1}{

L(Y |X1 = 0) = L(X2)

L(Y |X1 = 1) = L(X2 + α)

The conditional distribution of Y given X2 is

P(Y = αX1 +X2|X2) = 1− P(Y = X2|X2) = p

Thus, the distribution function of Y is

pF (· − α) + (1− p)F (·) (44)

It remains now to compute S1
2,CVM and S2

2,CVM . They are given by

S1
2,CVM = 6p(1− p)

∫
R

(F (t)− F (t− α))2 [(1− p)dF (t) + pdF (t− α)] (45)

11



And

S2
2,CVM = 1− 6p(1− p)

[
1

2
−
∫
R
F (t− α)dF (t)

]
(46)

(the 6 is the inverse of the normalizing factor, refer to note 5.2.1 with k = 1). Intuitively, as
p → 0, we’d be able to tell that X2 has more influence than X1. However, the Sobol’ indices
remain equal to 1

2 , whereas (S1
2,CVM , S

2
2,CVM )→ (0, 1).

The following numerical illustration has a sample size of N = 1000. The variable X2 is uni-
formly distributed in [0, 3/4] in order to guarantee αX1 and X2 share the same expectation and
variance. The two indices dependence on p(1− p) results in extreme values taken for p = 1/2.
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Figure 1: First index variation with p
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Figure 2: Second index variation with p
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6 Sensitivity analysis using rank statistics

6.1 Introduction

The aim of this section is to introduce a new estimator based on the work of S.Chatterjee. In [20],
he introduced a new empirical correlation coefficient that is directly related to both Cramér-Von
Mises and Sobol’ indices. Their main advantage lies within the small size of data required to get
”good” performances. We will present the two the estimators and their asymptotic properties.

6.2 Estimators

Let Y = f(V1, . . . , Vn) ∈ R be the output of a numerical code. Let us consider a pair of real-
valued random variables (X,Y ) as an i.i.d sample (Xj , Yj)16j6n. First, we rearrange the pairs
(X(1), Y(1)), . . . , (X(n), Y(n)) in such a way that

X(1) 6 . . . 6 X(n). (47)

Considering ri to be the rank of Y(i) - that is, the number of j such that Y(j) 6 Y(i) - the new
coefficient of correlation introduced by S.Chatterjee [20] is defined as

ξn(X,Y ) = 1−
3
∑n−1

i=1 |ri+1 − ri|
n2 − 1

. (48)

In the presence of ties, ξn is defined as follows: if there are ties among the Xi’s, then choose an
increasing rearrangement as above by breaking ties uniformly at random. Additionally, let ri be

12



as previously introduced and define li the number of j such that Y(j) > Y(i). The coefficient is
thus defined by

ξn(X,Y ) = 1−
n
∑n−1

i=1 |ri+1 − ri|
2
∑n

i=1 li(n− li)

Theorem 6.1 (Chatterjee) If Y is not almost surely a constant, then as n → ∞, ξn(X,Y )
converges almost surely to the deterministic limit

ξ(X,Y ) :=

∫
Var(E[1{Y >t}|X])dµ(t)∫

Var(1{Y >t})dµ(t)
, (49)

where µ is the law of Y . This limit belongs to the interval [0, 1]. It is 0 if and only if X and Y
are independent, and it is 1 if and only if there is a measurable function f : R → R such that
Y = f(X) almost surely.

This limit is equal to the Cramér-Von Mises sensitivity index SX2,CVM with respect to X, if
it’s one of the random real-valued variables X1, . . . , Xn in the considered numerical code. This
estimator will not be taken into consideration as the hypothesis of the input and output being
i.i.d. is almost never granted in real models. The idea behind it will be used however in order
to provide an estimator of the Sobol’ index, as we will see next. Let π(i) be the rank of Xi,
breaking ties at random so that π is permutation of {1, . . . , n}. Define

N(i) :=

{
π−1(π(i) + 1) if π(i) < n,

i if π(i) = n.
(50)

For any t ∈ R, let

Fn(t) :=
1

n

n∑
i=1

1{Yi6t}, Gn(t) :=
1

n

n∑
i=1

1{Yi>t}. (51)

Additionaly define

Qn :=
1

n

n∑
i=1

min{Fn(Yi)FN (YN(i))} −
1

n

n∑
i=1

Gn(Yi)
2 (52)

And

Sn :=
1

n

n∑
i=1

Gn(Yi)(1−Gn(Yi)), (53)

Taking π as the permutation introduced earlier, we notice that nFn(Yi) = rπ(i) for all i, and
nF (Yn(N(i)) = rπ(i)+1 for i 6= π−1(n). If i = π(n), then nFn(Yi) = nFn(YN(i)) = rn. Therefore

Qn =
1

n

n∑
i=1

min{Fn(Yi), FN (YN(i))} =
1

n

2 ∑
i 6=π−1(n)

min{rπ(i), rπ(i+1)}+
rn
n2
. (54)

The identity min{a, b} = 1
2(a+ b− |a− b|) gives

1

n

n∑
i=1

min{Fn(Yi), FN (YN(i))} =
1

n2

n∑
i=1

ri −
1

2n2

n−1∑
i=1

|ri+1 − ri|+
rn − r1

2n2
. (55)

Combining all of the above, we get

Qn
Sn

= ξn +
rn − r1
2n2Sn

(56)
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And in particular, ∣∣∣∣QnSn − ξn
∣∣∣∣ 6 1

2nSn
. (57)

Since Sn converges to a non-zero limit, we can rewrite ξn as Qn/Sn. [21]

Let u be a subset of {1, . . . , n}, taking Y u = f(Xu) we have the following result

Var(E
[
1{Y >t}|Xu

]
) = Cov

(
1{Y >t},1{Y u>t}

)

Lemma 6.1.1 Let GX be the conditional survival function: GX = P(Y > t|X). We can rewrite
the previous formula as

Var
(
E
[
1{Yj>t}1{YN(j)>t}|X1, . . . , Xn

])
= GXj (t)GXN(j)

(t). (58)

For g and h two integrable functions, the authors in [21] propose a universal estimation procedure
of expectation of the form

E [E[g(Y )|V ]E [(h(Y )|V ]] .

Let us first define ΨX as
ΨX(g) := E [g(Y )|X] , (59)

Lemma 6.1.2 Let g and h be two integrable functions such that gh is also integrable. Let
(Xj , Yj) be an n-sample of (X,Y ). Consider an Fn-measurable random permutation σn with no
fix point (i.e. σn(j) 6= j) for all j = 1, . . . , n. Then

E
[
g(Yj)h(Yσn(j)|X1, . . . , Xn

]
= ΨXj (g)ΨXσn(j)

(h). (60)

Theorem 6.2 Let g and h be two bounded measurable functions. Consider an Fn-measurable
random permutation σn with no fix point for all j = 1, . . . , n. In addition, assume that for any
j = 1, . . . , n, Vσn → Vj as n→∞ with probability one. Then χn(X,Y ; g, h) defined by

χn(X,Y ; g, h) :=
1

n

n∑
j=1

g(Yj)h(Yσn(j)) (61)

converges almost surely as n→∞ to χ(X,Y ; g, h), given by

χ(X,Y ; g, h) = ΨXj (g)ΨXσn(j)
(h) (62)

where ΨX is given in (59).+

We can now provide an estimator to the first-order Sobol’ index Si with respect to X = Vi.
Taking g(x) = h(x) = x and σn = N provides the analogue to ξn to estimate first order Sobol’
indices, given by:

ξSoboln (X,Y ) =
1
n

∑n
j=1 YiYN(j) − ( 1

n

∑n
j=1 Yj)

2

1
n

∑n
j=1 Y

2
j − ( 1

n

∑n
j=1 Yj)

2
. (63)
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6.3 Asymptotic properties

Under some mild assumptions on the model f and the variable Xi, a CLT for the first-order
Sobol’ index Si estimator ξSoboln is established, where Si is given by:

Var(E[Y |Xi])

Var(Y )
.

Theorem 6.3 Assuming Xi is real-valued and uniformly distributed in [0, 1], f to be a twice dif-
ferentiable function with respect to its i-th coordinate and that both f and its first two derivatives
are bounded, with respect to the i-th coordinate. Then:

√
n
(
ξSoboln (Xi, Y )− Si

)
(64)

is asymptotically Gaussian with zero mean and explicit variance σ2.

Remark The boundedness of f implies it has a fourth moment, which is the minimal assumption
to to get a CLT.

6.4 Numerical application

Let us consider the Ishigami model given by

Y = sinX1 + 7 sin2X2 + 0.1X4
3 sinX1

where the Xi’s are i.i.d. uniform random variables in [−π;π]. This model is often used as an ex-
ample for uncertainty and sensitivity analysis methods, because it exhibits strong non-linearity
and non-monotonicity. It also has a peculiar dependence on X3, as described by Sobol’ & Levi-
tan in [22].
Since rank based sensitivity analysis main’s strength is the low number of oberservations used,
compared to e.g. a Monte Carlo Pick-Freeze scheme, we will focus on showcasing this advantage.
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Performances for small sample sizes : The rank-based scheme proceeds much better for
small sample sizes as expected, and with no significant difference for bigger samples.. We con-
sider for our small-sized model a sample size varying from 10 to 100. The mean square error for
the first two indices are then shown. For a model where data might be scarce, the rank-based
estimators can come in very handy.
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7 Application : Aircraft take-off performance design require-
ments.

7.1 Introduction

In aircraft design process, Top Level Aircraft Requirements (TLARs) summarize the expected
performance of future aircraft. Setting these requirements might be challenging and can result
in an over-designed aircraft, and thus increased fuel consumption and overall cost. It is therefore
necessary to do readjustments through a negotiation process. In designing an aircraft, some of
these requirements, such as take-off requirements, can be modeled as constraints in an optimiza-
tion problem. In this section, we will try to incorporate more information in the renegotiation
process by considering some of these requirements as design variables rather than constraints,
then perform sensitivity analysis to assess their impact. The results tell that combining airplane
design and operations can provide new perspectives.

Figure 1: Top level requirements example scheme

Figure 2: The curse of conceptual design
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7.2 Airplane design tool and data

In this work, the airplane design tool used is based on the MARILib library [23]. It contains
a set of models dedicated to airplane conceptual design, that can therefore be used for multi-
disciplinary design optimization (MDO). The generic low fidelity models offered enable to size
modern aircraft based on a reduced number of TLARs, such as cruise Mach, and also constraints
such as take-off requirements.

The available database - gathered in the frame of the MOZAIC project [24] - offers detailed
flight data from take-off to landing for four A340-400 aircraft over 20 years. The focus will
therefore mainly be on the take-off requirements of this series. However, the data were needed
to be tuned [2] for the model to match a real A340-400, given an acceptable margin of error.

The take-off requirements are usually taken into account in the optimization process as
constraints. The parameters involved are among others, take-off mass, take-off field length,
pressure altitude of the airport, and local temperature. The requirements within this framework
are stated for maximum take-off mass (MTOM). The next section will define the process used
to calculate the impact of take-off requirements on operational costs.

7.3 Computation of take-off requirements’ impact on operational costs

The minimization problem is summarized in (65), while the process used for the calculation is
presented in figure 3 below

Figure 3: General process to calculate take-off requirements’ impact on operational costs

minimize f(x)

with respect to x

subject to g(x) > 0;

(65)

where:
. x is the design variable vector, including the wing reference area and the engine sea level static
thrust.
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. f(x) is the objection function, it can either be MTOM, cash operating cost or any other value
of interest.
. g(x) is the inequality constraint vector, which includes the take-off field length, the approach
speed etc.

7.4 Sensitivity analysis

The data used is based on a combination of an airplane design tool and a database. The input
parameters taken into consideration are the take-off field length (TOFL), the pressure altitude
of the airport (Altp) and the difference of the local temperature relative to the ISA model of
the atmosphere ∆TISA. The operational costs considered as inputs are the following: block
fuel (BF), block time (BT), cash operating cost (COC), direct operating cost (DOC), and the
total fuel (TF). The following table presents the results obtained for Sobol’ and Cramér-Von
Mises indices. They are calculated using Polynomial Chaos expansions, Pick-Freeze, and Rank
Statistics. The CVM-index estimator provided using Rank Statistics has not been included as
the available data does not resemble an i.i.d. sample, which is the condition for Chatterjee’s
theorem to be applied. The results displayed show only the direct influence of the inputs on
the outputs (first-order indices) and do not take into account the combined influences. They
are calculated using a design of experiments having 1000 points uniformly distributed in the
following ranges:

TOFL: between 1500 and 5000 meters.
Altp: between 0 and 2500 meters.
∆TISA: between -30 and +30 Celsius degrees.

Operation considered Design cost missions

Sensitivity indices Sobol CVM

Calculation method PCE Rank P&F

Output Input Index value

Block Fuel
TOFL
Altp

∆TISA

81.3%
6.2%
6.1%

73.5%
8.8%
8.2%

70.7%
13.5%
14.7%

48.5%
8.6%
16.2%

Block Time
TOFL
Altp

∆TISA

79.1%
7.4%
8.7%

69.4%
6.5%
10.6%

67.5%
12.4%
18.3%

53.4%
8.6%
12.5%

COC
TOFL
Altp

∆TISA

81.3%
6.2%
6.1%

73.5%
8.8%
8.2%

70.7%
13.5%
14.7%

48.5%
8.7%
12.5%

DOC
TOFL
Altp

∆TISA

81.3%
6.2%
6.1%

73.5%
8.8%
8.2%

70.7%
13.5%
14.7%

48.5%
8.6%
12.5%

Total Fuel
TOFL
Altp

∆TISA

81.6%
5.9%
5.8%

73.6%
8.8%
7.8%

70.8%
13.4%
14.5%

48.5%
8.6%
12.5%

Table 2: Sensitivity indices for the different costs related to the design cost mission

For all outputs in question, all indices present the same classification of the influence of
each input. The take-off field length has by far the greatest influence while the elevation and
temperature are almost equally involved with a small percentage each, except in the case of
Cramér-Von Mises indices where it shows that the temperature has slightly more influence.
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However, the CVM indices display a constant classification of the inputs for four outputs out of
five. The reason is that a CVM index takes into account the whole distribution of the output
regardless of the deviation of a variable from its mean, that is the variance. Something else worth
noticing - since we only considered first-order indices for our study - is that the sums of Sobol’
indices for each output are around 94-98 %, whereas the Cramér-Von Mises ones go as low as
73 %. This difference indicates that when the whole distribution is taken into consideration, the
combined influences(second- and third-order indices) can significantly increase. Lastly, for the
three calculation methods considered, block time shows different results than the other results
when these come close to one another. This may be explained by the fact that the flight duration
does not depend on take-off requirements as much as for the other four outputs.

To conclude, since TOFL has the greatest impact on the outputs, it will be kept to specify
the take-off requirements while the airport altitude and temperature will be set to the following
values: Altp = 0 ft. and ∆TISA = 0 Celsius degrees. This results in a modified design process
with take-off requirements turned into design variables. In addition to TOFL, the design vari-
ables would now also include the wing reference area WINGarea and the engine sea-level static
thrust SLST . The final results of the optimization process - for different payload disembark-
ing payload costs (cpld, expressed in $/kg) - are displayed in Table 3. (for more details on the
optimization process, refer to [2])

cpld TOFL WINGarea SLST Total cost

0.0 8.48% -1.19% -9.53% -1.02 %

0.5 8.48% -1.19% -9.53% -0.63 %

1.0 5.93% -0.86% -6.85% -0.30 %

1.5 3.42% -0.51% -4.07% -0.15 %

2.0 1.75% -0.27% -2.13% -0.09 %

2.5 1.21% -0.19% -1.49% -0.07 %

3.0 0.93% -0.14% -1.14% -0.05 %

4.0 0.74% -0.11% -0.92% -0.04 %

5.0 0.57% -0.09% -0.69% -0.03 %

6.0 0.41% -0.06% -0.51% -0.02 %

8.0 0.31% -0.05% -0.39% -0.01 %

10.0 0.24% -0.04% -0.30% -0.01 %

Table 3: Results of optimization presented as relative difference to the reference aircraft

We can notice that the total cost decreases with cpld. This is explained by the fact the
airlines work to maximize the use of their fleet, once they are aware of their operational limits.
The values cpld cover are from 0 to 10 $/kg. Assuming a passenger represents 100 kg of payload,
then the range the penalty we cover is up to 1000 $ per passenger, which seems reasonably high
for the price of a long-range flight ticket. It is important to note that these costs will greatly
depend on the region of the world and airlines operated, the period of the year, the day of the
week, and the additional services related.

Also, as the TOFL increases, both the WINGarea and SLST reduce. We would expect this
to make the airplane more affordable.

And finally, though the gains in COC might seem marginal (up to 0.63%), when scaled to a
full fleet over a long period of time, they present a large sum.

8 Conclusion

In this paper, I present multiple sensitivity analysis indices with various ways of estimating
them. The classical Sobol’ indices can show several drawbacks that can lead to consider the
use of Cramér-Von Mises ones. The latter contains all of the distribution information. It is
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up to the practitioner to select the rightest combination of index and method of calculation
relative to the data desired to analyse. The paper concludes with a concrete example applied
to the aircraft design process in which parameters were tuned in order to improve the overall
optimization process, resulting in significant savings.

Acknowledgments

I would like to express my sincere gratitude to Pr. Thierry Klein and Pr. Nicolas Peteilh from
Ecole Nationale de l’Aviation Civile - for their clear-cut remarks, their constructive criticism, and
most importantly their support and consideration throughout the whole period of this project.

Appendix

Theorems

Theorem 8.1 (Central Limit Theorem) Let {X1, . . . , Xn} be a random n-sample size- that
is, a sequence of independent and identically distributed (i.i.d.) random variables drawn from a
distribution of expectation (or expected value) given by µ and finite variance given by σ2. Then

√
n
(
X̄n − µ

) L−−−→
n→∞

N (0, σ2) (66)

Theorem 8.2 (Strong law of large numbers) Let {X1, . . . , Xn} be a random n-sample size-
that is, a sequence of independent and identically distributed (i.i.d.) random variables drawn
from a distribution of expectation (or expected value) given by µ. Then

X̄n :=
X1 + . . .+Xn

n

a.s−−−→
n→∞

µ (67)

Legendre polynomials

The Legendre polynomials Pn(x) are solution of the following differential equation:

(1− x2)y”− 2xy′ + n(n+ 1)y = 0 (n ∈ N) (68)

They may be generated in practice by the following recurrence relationship:

P0(x) = 1

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x);
(69)

They are orthogonal with respect to the uniform probability measure over [-1, 1]:∫ 1

−1
Pm(x)Pn(x)dx =

2

2n+ 1
δmn (70)

where δmn is the Kronecker symbol. If U is a random variable with a uniform probability
distribution function over [-1,1], the following relationship holds:

E [Pm(U)Pn(U)] =
2

2n+ 1
δmn (71)

Additionally, the first three Legendre polynomials are:

P1(x) = x , P2(x) =
1

2
(3x2 − 1) , P3(x) =

1

2
(5x3 − 3x) (72)
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